
GE6151 COMPUTER PROGRAMMING
LECTURE 6

Prof. Dr. M. Paulraj PhD.,
SRIT
Coimbatore-10

Functions in c

A PROBLEM can be solved easily if it is decomposed into

parts. Similarly a C program decomposes a program into its

component functions.

Big problems require big programs – too big to be written all

at one time or to be written by a single programmer. Thus by

decomposing a program into functions, we divide the work

among several programmers.

We can test the components of programs separately.

We can change one function with out changing or affecting

the other functions.

6. FUNCTIONS IN C

Functions provide a way to reuse code that is required in more

than one place in your program.

A C program is made up of one or more functions, exactly one

of which must be named main.

Execution begins with main and terminates when main does.

The main function can call other functions to do specific jobs.

Function is an independent module and each function solves

a part of the problem.

Note : A C function can be invoked or called by another

function.

OPERATING SYSTEM

MAIN FUNCTION.

MAIN FUNCTION

OTHER FUNCTIONS.

OTHER FUNCTIONS

OTHER FUNCTIONS

Once after completing the task, the called function returns the

control to the caller function.

When main completes its operations, control returns to the

OS.

Operating System

void main(void)
{
int a = 3;

printf(“a is %d\n”,a);

return;
} printf()

{

return;
}

A function can call or invoke another function.

The invoking function passes information to the invoked function.

The invoked function may return information to the invoked.

int square(int a)
{
return(a*a);
}

void main(void)
{
int x = 5;
int y;
y=square(x);

printf(“y is %d\n”,y);
return;
}

The following combinations of information passing are

possible:

The invoker passes information and the invoked returns

information.

The invoker passes information but the invoked returns

none.

The invoker passes nothing but the invoked returns

information.

The invoker passes nothing and the invoked returns none.

The name of a function is used in three ways.

(a) for declaration

(b) in a call

(c) for definition

A function must be first declared and defined.

Function
declaration
Statement

Function
definition
Statements

return_type func_name (formal parameter list);

Function
return data
type

Function

Name

Function

Dummy arguments

A Function Declaration

Note the
semicolon.

A function declaration consists of three parts:

The type of data to be returned (namely void, int, float, char,

double).

The name of a function (which requires to call the function).

The function name is a valid C identifier.

Formal parameter list:

The parameters are the place holders for the arguments that

the function expects.

If the program has no parameters, code void is used.

If the program has more than one parameter, the parameters

are separated with commas. The prototype declaration

statement is terminated by a semi colon.

NOTE:

A function declaration contains no code.

Example:

float makecoffee(float sugar, float bru, float milk);

int addnum(int num1,int num2);

void printnum(int number);

void printstar(void);

float makecoffee (float sugar, float bru, float milk);

Function
return type

Function

Name

Function

Dummy arguments

FUNCTION DEFINITION:

It contains the code for a function.

It is made up of two parts:

Function header

Function body.

return_type fname(formal parameter list)

{

/* beginning of the function */

/* make local definitions of variables here */

/* statements or actions to be taken */

} /* end of function */

NOTE :

There is no semi colon at the end of the first function

definition statement.

Function Header

Function body

The format of a function header is:

return_type fname(formal parameter list)

The function header has three parts:

return type

function name

formal parameter list

return_type fname (formal parameter list)

Function Header

No semi colon

Return Type:

A function return type may be void, int, char, float,

pointer, double. long double.

If the return value is null (nothing), it has to be specified

as void.

Function name:

It is a valid “C” identifier.

Formal parameter list:

The parameters are place holders for the arguments that

the function expects.

The parameters are enclosed in parentheses and

separated by commas.

There is no limit to the number of parameters a function

can have.

If the function has no parameters (ie. If it not receiving

any data from the invoker) then the empty list is declared

by the key word void.

Function body:

The body of a function is a compound statement. ie. It is

enclosed between open { and closing } braces.

The function body contains local variable declarations

and statements and terminated by a return statement.

Return Statement:

When a return statement in a function is executed, the

function returns to its invoker.

The return statement is optional in a function that does not

return a value but, if used it is written as:

return;

If the return is not specified, C will assume it is of type

integer.

If a function that does not have a return statement, the

function returns to the invoker after the last statement in the

function’s body is executed.

A function that returns a value must have at least one return

statement which may be written as:

return(expression);

or

return expression;

Example:

return(30*6+20); /*common*/

or

return 30*6+20; /* legal */

A function can have any number of return statements. Of course only

one return statement is executed per invocation, because the return

statement returns control and a value to the invoking function.

NOTE: As a rule of thumb keep the number of return statements

small; otherwise the function becomes hard to understand, hard to

debug and hard to alter.

A Function Call:

A functional call is an post fix expression. (Second

highest precedence)

The operand in the functional call is the function name.

The operator is the parenthesis set () which contains the

actual parameters.

The actual parameters are the values sent to the calling

function.

The actual parameters must match with the function

formal parameters in type and order.

The actual parameters are separated by commas.

Find the errors in the following function definition:

void fun(int x,int y);

{

int z;

return z;

}

void fun1(int x, y)

{

int z;

return z;

}

What is the error in the following prototype:

int sum(int x, y);

int sum(int x, int y)

void sum(void,void);

/* program using function */

#include<stdio.h>

float far2cen(float far);

int main(void)

{

float far,cen;

scanf(“%f”,&far);

cen = far2cen(far);

printf(“Farenheit temp = %f\n”,far);

printf(“Centigrade temp is %f\n”,cen);

return 0;

}

float far2cen(float far)

{

return((5.0/9.0)*(far-32.0));

}

/* program in c to add two numbers using functions */

#include<stdio.h>

float addnumber(float num1, float num2);

void main(void) {

float n1,n2,sum;

printf(“please enter two numbers”);

scanf(“%f %f”,&n1,&n2);

sum = addnumber(n1,n2);

printf(“%d + %d = %d\n”,n1,n2,sum);

return; }

float addnumber(float num1, float num2)

{

float result;

result= num1 + num2;

return(result);

}

/*program in c to find the hypotenuse,

are, perimeter of a right angled triangle given the two sides */

#include<stdio.h>

#include<math.h>

float hypotenuse(float side1,float side2);

float areatri(float side1, float side2);

float perimeter(float side1, float side2);

void main(void) {

float s1,s2,s3,area, hypo, peri;

printf(“please input the two sides ”);

scanf(“%f %f”,&s1,&s2);

area = areatri(s1,s2);

peri = perimeter(s1,s2);

hypo = hypotenuse(s1,s2);

printf(“The sides of the triangle is %f

%f\n”,s1,s2);

printf(“The area = %f\n”,area);

printf(“The perimeter = %f\n”,peri);

printf(“The hypotenuse = %f\n”,hypo);

return; }

float hypotenuse(float side1,float side2)

{

return(sqrt(side1*side1 + side2*side2));

}

float areatri(float side1, float side2);

{

return(0.5*side1*side2);

}

float perimeter(float side1, float side2);

{

float side3;

side3 = hypotenuse(side,side2);

return(side+side2+side3);

}

Side Effect in a function:

A change of state in the program takes place due to the action of a

function, which is termed as a side effect of a function.

The side effect may be:

* accepting data from outside the program.

* sending data out of the program to a file or to the monitor.

* Changing the value of a variable in the calling function.

Call by Value:

1. Every argument to a function is an expression, which has a value.

2. C passes an argument to an invoked function by making a copy of

the expression value, storing it in a temporary cell.

3. Only the copy of the value is passed to the function argument.

NOTE : The original data in the calling function are safe and

unchanged.

As only the copy of the values are passed to the function, this method

is called call by values.

Example: Call by value

/* program to find the square of a number */

#include<stdio.h>

int square(int num);

int main(void)

{

int s1,result;

scanf(“%d”,&s1);

result = square(s1);

printf(“The square of %d is %d \n”, s1,result);

return 0;

}

int square(int num)

{

return(num*num);

}

#include<stdio.h>

void modify(int x);

int main(void)

{

int x = 5;

printf(“value of x before calling

modify is %d\n”,x);

modify(x);

printf(“value of x after calling

modify is %d\n”,x);

return 0;

}

void modify(int x)

{

printf(“value of local variable x in

modify is %d\n”,x);

x = 10;

printf(value of x after reassigning

local variable x in modify is

%d\n”,x);

return;

}

Result:

value of x before calling modify is 5

value of local variable x in modify is 5

value of x after reassigning local variable x in modify is 10;

value of x after calling modify is 5

Call by reference:

It links the variable identifiers in the calling function to their corresponding

parameters in the called function.

ie., When the called function changes a value in a variable, then it

actually changes the variables in the calling function. This is done by

passing an address to the called function.

& - the address operator

* - indirection operator.

If ‘addr’ is a variable that contains an address then *addr means the value

pointed by the address stored in the variable ‘addr’. Here ‘addr’ is a

pointer variable.

39

 Recursion is a term describing functions which are called by themselves
(A function that calls itself)

 Recursive function has two elements:

Each call either solves one part of the problem or it reduces the size of
the problem.

The statement that solves the problem is known an base case. Every
recursive function must have a base case. The rest of the function is
known as the general case.

 Recursion is very useful in mathematical calculations and in sorting of
lists.

Recursive Functions

40

Recursive Functions (cont.)

 Example: factorial
n! = n * (n – 1) * (n – 2) * … * 1

 Recursive relationship:
 (n! = n * (n – 1)!)

 5! = 5 * 4!

 4! = 4 * 3!…

 Base case (1! = 0! = 1)

43

Recursive Functions (Example)

 Fibonacci series: 0, 1, 1, 2, 3, 5, 8...
 Each number sum of two previous ones

 Example of a recursive formula:

fib(n) = fib(n-1) + fib(n-2)

45

Recursive Functions (Example)

Sample code for fibonacci function

long fibonacci(long n)

{

if (n == 0 || n == 1)

return n;

else

return fibonacci(n - 1) +

fibonacci(n – 2);

}

#include<stdio.h>

void print_value(int n);

void main(void)
{

print_value(5);
return;

}

void print_value(int n)
{

if (n < 1)
return;

print_value(n-1);
printf("%d\n",n);

}

#include<stdio.h>

int add_recursive(int n);

void main(void)
{

int value;
value = add_recursive(10);
printf("Value is %d\n",value);
return;

}

int add_recursive(int n)
{

if(n == 1)
return(1);

else
return(n+add_recursive(n-1));

}

Thank you

